Monatshefte für Chemie 99, 823-831 (1968)

Über den Einbau von Fremdionen in 7-Al₂O₃, 3. Mitt.

Der Einfluß des Ca-Einbaues auf die Oberflächenausbildung von γ-Al₂O₃

Von

H. Krischner, K. Torkar und J. A. Mulder

Aus dem Institut für Physikalische Chemie der Technischen Hochschule in Graz

Mit 4 Abbildungen

(Eingegangen am 18. Dezember 1967)

An γ -Al₂O₃-Präparaten, die ca. 2,4 Gew. % CaO, bez. auf Al₂O₃, enthielten, wurden vollständige Sorptionsisothermen mit N₂ bei 78° K aufgenommen und die Porenverteilungskurven berechnet. Sämtliche Hysteresisschleifen entsprachen dem E-Typ nach *De Boer*. Ein Vergleich mit reinem γ -Al₂O₃ zeigte, daß der Kurventypus durch den Einbau von Ca-Ionen nicht wesentlich verändert wird. Die auftretenden Unterschiede können durch eine langsamere Alterung Ca-hältiger Präparate erklärt werden.

Complete sorption isotherms of N₂ at 78° K on γ -Al₂O₃ samples, containing approximately 2.4% (w/w) CaO, were determined and the distribution curve of pore size calculated. All hysteresis loops were found to correspond to *De Boers* E-type. Comparison with samples of pure γ -Al₂O₃ showed no appreciable change due to the incorporation of Ca-ions. Differences observed can be accounted for by slower ageing of Ca-containing samples.

Einleitung

Die beiden ersten Mitteilungen dieser Reihe^{1, 2} haben sich mit der Darstellung erdalkalihältiger Gamma-Aluminiumoxide beschäftigt, wobei der Einfluß dieser Ionen auf Größe und thermische Beständigkeit der Oberfläche im Mittelpunkt des Interesses standen. Bei Aluminiumoxiden der Gamma-Gruppe wird die thermische Stabilität der Oberfläche durch

¹ H. Krischner, K. Torkar und H. Hoffmann, Mh. Chem. 98, 2348 (1967).

² H. Krischner, K. Torkar und P. Hornisch, Mh. Chem. 99, 220 (1968).

Einbau geringer Mengen Erdalkaliionen merklich erhöht, doch blieb bei der bisherigen Behandlung die Frage ungelöst, ob die Erdalkaliionen nur an der Oberfläche des γ -Al₂O₃ angereichert sind oder im ganzen Kristallgitter eingebaut werden. Im ersten Falle wäre zu erwarten, daß sich die Oberflächenbeschaffenheit der Präparate verändert und somit ein Unterschied in der Sekundärstruktur zwischen reinen und Erdalkaliionen enthaltenden Gamma-Formen des Aluminiumoxides beobachten ließe.

Um Aufschluß über die Oberflächenbeschaffenheit der Proben zu erhalten, wurden vollständige Sorptionsisothermen aufgenommen. Dazu wurde sowohl der Verlauf einer Stickstoffadsorptionsisotherme als auch der Desorptionsisotherme bei der Temperatur des flüssigen Stickstoffs bestimmt. Die Messungen wurden zwischen den relativen Stickstoffdrucken von $p/p_0 = 0$ bis $p/p_0 = 1$ durchgeführt. An porösen Stoffen tritt hiebei der Effekt der Kapillarkondensation auf, der den Verlauf der Kurven, je nach Größe und Gestalt der vorhandenen Poren, beeinflußt und sich nahezu immer in der Bildung einer Hysteresisschleife äußert.

Grundlagen des Meßverfahrens

Während für technische Belange vielfach ein mittlerer Porenradius r bestimmt wird, der sich aus dem Gesamtporenvolumen V_p nach Gl. (1) berechnen läßt, genügt diese relativ grobe Näherung, die nur für zylindrische Poren Gültigkeit hat, für eine genauere Porenanalyse nicht.

$$\bar{r} = 2 V_p / S \tag{1}$$

S = Oberfläche (nach BET)

Unter Heranziehung der Theorie der Kapillarkondensation kann man, durch Adsorption bei Drucken unter dem Sättigungsdampfdruck, Aussagen über Porenform, Porengröße und Porenverteilung machen. Als Grundlage für diese Untersuchungen dient die *Kelvin*-Gleichung, die man in der Form

$$\log \frac{p}{p_0} = \frac{-2\sigma V \cdot \cos \Psi}{R \cdot T \cdot r_K} \tag{2}$$

anschreiben kann. Hiebei bedeuten:

- p/p_0 = relativer Dampfdruck über der Flüssigkeit (N₂)
 - $\sigma = Oberflächenspannung der Flüssigkeit (8,72 dyn/cm für N₂)$
 - V = Molvolumen des adsorbierten Stickstoffes ($V = 34,68 \text{ cm}^3/\text{mol}$)
 - Ψ = Berührungswinkel zwischen Flüssigkeitsoberfläche und Kapillare (wird konstant mit 180° angenommen)

R = Gaskonstante

 $T = \text{Siedetemperatur des N}_2 (78^\circ \text{ K})$

 $r_K = ,, Kelvinradius''$

Sind alle Poren vollständig mit Flüssigkeit gefüllt, so wird, sobald der relative Druck niedriger ist als es der *Kelvin*gleichung entspricht, Flüssigkeit verdampfen. Aus dem entstehenden Dampfvolumen kann man unter bestimmten Voraussetzungen auf das Porenvolumen zurückrechnen.

Die Gestalt der Sorptionsisothermen

Der Verlauf von Adsorptions- und Desorptionskurven wird durch die Art der vorhandenen Poren beeinflußt. Es ist daher möglich, aus der Form der auftretenden Hysteresis qualitative Aussagen über Porenform und Porengröße zu machen. Voraussetzung für eine positive Interpretation ist, daß die Poren immer überwiegend einer Gestaltsgruppe angehören und daß die Größe zumindest einer Porendimension allen Poren gemeinsam ist. De Boer³ hat unter diesen Voraussetzungen 5 verschiedene Grundtypen von Hysteresisschleifen diskutiert und eine Zuordnung dieser Typen zu Poren verschiedener Gestalt und Größe vorgenommen. Lippens⁴ beschreibt noch einen weiteren Typ von Hysteresisschleifen, der vor allem bei Aluminiumoxiden beobachtet werden kann.

Die Porengrößenverteilung

Während man aus der Gestalt der Adsorptions- und Desorptionskurven qualitative Aussagen über Art und Anordnung der Poren machen kann, sind einige Verfahren ausgearbeitet worden, auch quantitative Aussagen über die Porenverteilung zu machen. Ausgehend von der *Kelvin*gleichung und der Theorie der Vielschichtadsorption haben *Carman*⁵, *Barrett*⁶, *Pierce*⁷, *Oulton*⁸, *Cranston*⁹, *Innes*¹⁰ u. a. Berechnungswege für Porenverteilungen angegeben, die sich vor allem in der Verwendung verschiedener Werte für die adsorbierten Schichtdicken sowie in der Anwendung von Gestaltsfaktoren unterscheiden.

³ J. H. De Boer, in: D. H. Everett and F. S. Stone, Structure and Properties of Porous Materials, Butterworths, 1958.

⁴ B. C. Lippens, Thesis, Delft (1961).

⁵ P. C. Carman, Proc. Roy. Soc. A 209, 69 (1951).

⁶ E. P. Barrett, L. G. Joyner und P. P. Halenda, J. Amer. Chem. Soc. 73, 373 (1951).

⁷ C. Pierce, J. Physic. Chem. 57, 149 (1953).

⁸ T. D. Oulton, J. Physic. Chem. 52, 1296 (1948).

⁹ R. W. Cranston und F. A. Inkley, Adv. Catalysis 9, 143 (1957).

¹⁰ W. B. Innes, Analyt. Chem. 29, 1069 (1957).

Zur Interpretation der an den verschiedenen Aluminiumoxiden erhaltenen Ergebnisse kam hier die etwas modifizierte Auswertungsmethode nach Innes¹⁰, der entsprechend der Näherung von Ries¹¹ der Berechnung ein Kapillarsystem paralleler Platten zugrunde legt, zur Anwendung. Dieses Plattenmodell zur Charakterisierung von Aluminiumoxiden heranzuziehen, dürfte deren strukturellen Merkmalen am ehesten entsprechen. Der im folgenden kurz beschriebene Rechengang stützt sich auch auf Arbeiten, die Lippens und de Boer¹² an Aluminiumoxiden durchgeführt haben und verwendet Rechenverfahren, die von Cranston und Inkley⁹ angegeben wurden.

Es wird dabei zunächst angenommen, daß bei einem relativen Stickstoffdruck von $p/p_0 = 1$ sämtliche Poren mit flüssigem Stickstoff gefüllt sind. Wird der Druck erniedrigt, so werden bei einem beliebigen relativen Druck $(p/p_0)_i$, der zwischen 0 und 1 gelegen ist, alle Poren über einer bestimmten Größe, entsprechend der *Kelvin*gleichung, entleert sein. Diesen größeren Poren entspricht ein bestimmtes Porenvolumen. Die Wände dieser Poren sind aber noch von einer adsorbierten Schicht der Dicke t bedeckt. Man muß daher den ursprünglichen Kelvinradius r_K durch den für die adsorbierte Schicht korrigierten Wandabstand ersetzen.

$$r_K = (d - 2t). (3)$$

Dadurch erhält die *Kelvin*gleichung, nach Zusammenziehen der numerischen Größen und nach Umformung, die Form:

$$(d - 2t) = -4,14/\log p/p_0$$
 (Å) (4)

Wird der relative Druck um eine kleine Stufe von $(p/p_0)_{i+\Delta}$ auf $(p/p_0)_{i-\Delta}$ erniedrigt, so wird ein bestimmter Anteil des Stickstoffes desorbiert. Das Volumen des desorbierten Stickstoffes setzt sich aus drei Anteilen zusammen, und zwar aus dem Volumen, das entsprechend der *Kelvin*gleichung aus den Poren entweicht, weiters aus dem Volumen, das durch die Abnahme der Schichtdicke durch die Druckerniedrigung in diesen Poren freigesetzt wird, und schließlich aus einem Anteil, der sich aus der Abnahme der Schichtdicke in den schon vor dem *i*-ten Schritt entleerten Poren ergibt.

Unter Berücksichtigung dieser Größen ist es möglich, Porenverteilungen zu berechnen. Die den einzelnen Porenweiten entsprechenden p/p_0 -Werte wurden bei unserer Berechnung mit Hilfe der von *De Boer* und *Lippens*¹² angeführten Schichtdickenwerte aus der Beziehung von *Barrett, Joyner* und *Halenda*⁶ errechnet und die diesen relativen Drucken

¹¹ H. E. Ries, R. A. van Nordstrand, M. F. L. Johnson und H. O. Bauermeister, J. Amer. Chem. Soc. 67, 1242 (1945).

¹² B. C. Lippens und J. H. De Boer, J. Catalysis 3, 32 (1964).

entsprechenden Werte des adsorbierten Volumens aus der Desorptionskurve entnommen.

Für Porenweiten zwischen 200 und 50 Å wurde die Porenverteilung in Intervallen von 10 Å, für kleinere Poren in Intervallen von 5 Å berechnet.

Aus der Porenverteilung errechenbare Größen

Das Gesamtporenvolumen V_p (ml/g) erhält man aus dem, bis zum relativen Druck $p/p_0 = 0.943$ adsorbierten Volumen, durch Multiplikation mit dem Faktor $a = 1.584 \cdot 10^{-3}$, der das Verhältnis der Dichte gasförmigen Stickstoffes zur Dichte flüssigen Stickstoffes berücksichtigt. Ebenso erhält man die wahren Porenvolumina durch Multiplikation der experimentell bestimmten Δ V-Werte mit a. Die Summe über sämtliche korrigierte Δ V-Werte wird als $V_{\rm cum}$, das kumulierte Porenvolumen bezeichnet. Die kumulierte Oberfläche $S_{\rm cum}$ erhält man durch Summieren aller Δ $S_{\rm cum}$ -Werte, die nach Gl. (5) aus den Δ $V_{\rm cum}$ -Werten erhalten werden können, wobei d den mittleren Wandabstand während eines Schrittes bedeutet.

$$\Delta S_{\rm cum} = \frac{2 \,\Delta V_{\rm cum}}{\bar{d}} \cdot 10^4 \,. \tag{5}$$

Inwieweit die kumulierten Größen V_{cum} und S_{cum} mit dem Gesamtporenvolumen V_p und der BET-Oberfläche S_{BET} übereinstimmen, hängt von verschiedenen Bedingungen ab und ermöglicht weitere Rückschlüsse auf charakteristische Eigenschaften der untersuchten Substanzen.

Ergebnisse

Sämtliche in dieser Arbeit untersuchten Aluminiumoxidpräparate wurden mittels der in der 1. Mitt.¹ dieser Reihe beschriebenen Fällungsapparatur durch Versetzen von Aluminiumnitratlösungen mit NH₃ bei einem konstanten pH-Wert von 9 \pm 0,05 hergestellt. Die Ca-hältigen Präparate enthielten 2,4 Gew. % CaO, bez. auf Al₂O₃, und wurden durch Mitfällen von

Т	al	ьe	1]	le	1
1	a_{1}	10	11	ιœ	

Probe Nr.	Alterung	Glühtemp. (24 Stdn.)	Тур	S_{BET}	$S_{\rm cum}$	V_p	Veum	V_c/V_p	$S_{ m eum}/S_{ m BET}$
1	2 Stdn.	500°	Е	207	175	0,272	0,262	0,96	0,85
2	2 Stdn.	800°	\mathbf{E}	151	123	0,230	0,218	0,95	0,81
3	1 Woche	500°	ED	119	91	0,239	0,228	0,95	0,76
4	2 Stdn. + Ca	500°	\mathbf{E}	232	140	0,208	0,181	0,87	0,60
5	2 Stdn. + Ca	800°	\mathbf{E}	154	124	0,195	0,190	0,98	0,80
6	1 Woche + Ce	1500°	\mathbf{E}	203	185	0.254	0.238	0.94	0.91

Ca-Nitrat erhalten. Die Präparate 1, 2, 4 und 5 wurden 2 Stdn. in Lösung gealtert, Präparate 3 und 6 eine Woche. Nach dem Altern wurden die Proben filtriert, getrocknet und bei 500° bzw. bei 500° und 800° C jeweils 24 Stdn. geglüht.

Nach dem Glühen wurden die Proben röntgenographisch untersucht, bei 200° im Vak. ausgeheizt und dann die Sorptionsisothermen aufgenommen. Die Ergebnisse dieser Untersuchungen sind in Tab. 1 zusammengestellt.

Abb. 1. Sorptionsisothermen reiner y-Al₂O₃-Präparate

Diskussion der Ergebnisse

In Abb. 1 sind die Sorptionsisothermen reiner γ -Al₂O₃ zusammengestellt, Abb. 2 zeigt die zugehörigen Porenverteilungskurven. Kurve 1 und Kurve 2, entsprechend Präparaten, die zwei Stunden in Lösung gealtert und 24 Stdn. bei 500° bzw. bei 800° geglüht wurden, zeigen einen Verlauf, der dem Typ E nach *De Boer* entspricht. Dieser Typ ist charakteristisch für röhrenförmige Poren mit verschieden großen Erweiterungen und Verengungen. Bei der dritten Kurve, die nach einer Woche Alterung in Lösung 24 Stdn. bei 500° geglüht wurde, ist deutlich ein Übergang des E-Types zum D-Typ nach *De Boer* zu erkennen. Daraus läßt sich auf das zusätzliche Auftreten spaltförmiger Poren schließen. H. 2/1968] Über den Einbau von Fremdionen in γ -Al₂O₃

Aus den Porenverteilungskurven ist zu entnehmen, daß Präparat 1 ein ausgeprägtes Maximum bei einer Porenweite von d = 26 Å aufweist. Beim Erhitzen des Präparates auf 800° (Nr. 2) wird dieses Maximum kleiner und verschiebt sich gegen größere Porenweiten. Die Vergrößerung der Poren ist zumindest teilweise, wie elektronenmikroskopische Untersuchungen gezeigt haben, auf eine Separierung der Primärteilchen zurückzuführen. Präparat 3, das bei der Alterung in Lösung einen teilweisen

Abb. 2. Porenverteilungskurven reiner y-Al₂O₃-Präparate

Übergang von Pseudoböhmit zu Bayerit erkennen ließ, zeigt ein breites Porenmaximum zwischen 30 und 70 Å. Das Auftreten sowohl röhrenförmiger als auch spaltförmiger Kapillaren konnte auch elektronenmikroskopisch nachgewiesen werden.

Die Abnahme der BET-Oberfläche von Präparat 2 gegenüber 1 ist auf die höhere Glühtemperatur zurückzuführen, die Abnahme von 3 gegenüber 1 auf eine Rekristallisation in Lösung.

Abb. 3 und 4 zeigen die Sorptionsisothermen sowie die Porenverteilungskurven für Ca-hältige Präparate. Die Kurven zeigen einen ähnlichen Verlauf wie bei kurz gealterten Ca-freien Präparaten und entsprechen dem E-Typ nach *De Boer*. Auch bei Ca-hältigen Präparaten überwiegen also röhrenförmige Kapillaren mit verschieden großen Erweiterungen und Verengungen. Allerdings ist das Aussehen der Kurve 4*, die in ihrer Vor-

* Die in Abb. 3 verschentlich als Kurve 5 bezeichnet wurde.

geschichte weitgehend Kurve 1 des Ca-freien Präparates entspricht, gegenüber dieser verändert. Die Adsorptionsisotherme erscheint wesentlich flacher als bei Präparat 1 und verläuft bei höheren p/p_0 -Werten fast parallel mit der Desorptionskurve. Das weist auf das Vorhandensein von Poren eines eng begrenzten Größenbereiches hin. Mit Ca-freien

Abb. 3. Sorptionsisothermen Ca-hältiger γ-Al₂O₃-Präparate (die als Kurve 5 bezeichnete Kurve soll richtig Kurve 4 sein und umgekehrt!)

Präparaten erhält man ähnliche Kurven, wenn die Präparate nur kurz in Lösung gealtert werden. Die Porenverteilungskurve zeigt ein starkes Maximum bei etwa 20 Å und ein fast völliges Fehlen größerer Poren. Dementsprechend ist auch das Gesamtporenvolumen geringer als bei Ca-freien Präparaten.

Präparat 5 zeigt, trotz höherer Glühtemperatur, einen ähnlichen Kurvenverlauf wie Präparat 1. Die Adsorptionsisotherme steigt relativ flach an, die Desorptionsisotherme fällt stark ab. Es ist ein ausgeprägtes Porenmaximum zwischen 20 und 30 Å zu erkennen, größere Poren fehlen weitgehend. Die Übereinstimmung zwischen den beiden Kurven 5 und 1 läßt erkennen, daß das Alterungsverhalten der Präparate durch die Anwesenheit von Ca-Ionen verändert wird. Sowohl in Lösung als auch beim Glühen altern Ca-hältige Präparate langsamer als Ca-freie. Dies ist auch aus dem Vergleich von Präparat 6 mit 3 zu folgern. Während bei Präparat 3 eine Rekristallisation in Lösung zu Bayeritbildung und damit zur Ausbildung spaltförmiger Poren führt, zeigt das Ca-hältige Präparat

Abb. 4. Porenverteilungskurven Ca-hältiger Al₂O₃-Präparate

eine Sorptionsisotherme, wie sie für entwässerten Pseudoböhmit charakteristisch ist. Die Anwesenheit von Ca hat also die Alterung in Lösung verlangsamt, aber keine wesentlichen Unterschiede im Sorptionsverhalten gegenüber kürzer gealterten Ca-freien Präparaten bewirkt.

Der Vergleich der Sorptionsisothermen reiner und Ca-hältiger γ -Al₂O₃-Präparate zeigt, daß der Kurventypus durch den Einbau von Ca-Ionen nicht wesentlich verändert wird. Sämtliche Präparate, die durch Entwässerung von Pseudoböhmit entstanden sind, lassen röhrenförmige Poren mit unterschiedlichem Durchmesser erkennen. Auch elektronenmikroskopisch war kein wesentlicher Unterschied zwischen reinen und Ca-hältigen Proben festzustellen. Auftretende Unterschiede lassen sich durch ein anderes Alterungsverhalten Ca-hältiger Präparate erklären. Sowohl in Lösung als auch beim Glühen altern Ca-hältige Präparate langsamer als reines γ -Al₂O₃.